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Coordination-dependent tight-binding potentials for 
carbon-based materials 

S Serra, C Moltenit and L MigIio 
Dipartimento di Fisica &ll'Lhiversit& di Milano, via Celoria 16, 1-20133 Milano. Italy. 

Received 16 January 1995 

Abstract. We point out the impottant role of coordination-dependent terms in tight-binding 
potentials for carban stmchvei. as quired by the strong changes in orbital hybridization, 
especially for low-coordination phases. We discuss lhe performances of two forms of potential 
on the basii of the cohesion energy and molecular dynamics predictions, as compared with 
existing first-principles results. 

1. Inboduction 

It is well known that carbon displays rather stable structures with different coordination 
numbers: 4 (diamond), 3 (graphite), 2 (carbon chains). This flexibility is achieved by 
hybridizing the atomic orbitals in sp3, sp', sp configurations, so that three-dimensional, 
planar and linear structures, respectively, are obtained. The recent discovev of fullerenes 
[ 11 has confirmed the high allotropic inclination of carbon, as their bonding configuration 
is in between sp3, and spz hybrids. In the common pair potential scheme, the total energy 
of the system is rather sensitive to the number of neighbours, the repulsive energy beiig 
proportional to the coordination number. This is not the case for graphite and diamond, for 
example: therefore it is quite clear that coordination dependence of the interatomic potentials 
is an important issue for carbon. 

This problem has been pointed out by Tersoff (formerly for silicon and subsequently 
for carbon) 121 in the framework of a classical potential composed for a simple repulsive 
part and a complex attractive one. In that approach, however, the latter term bears most of 
the coordination-dependence, where the angles between bonds have also been considered 
in quite a cumbersome expression. 

The advantage of tight-binding (m) potentials is that three-body effects are naturally 
included in the attractive pan, via a Slater-Koster 131 expansion of the TB hopping elements 
into angular and radial conhibutions. Two recent studies by Goodwin [4] and Xu et al [5] 
have demonstrated that TB potentials for carbon work fairly well, provided that the radial 
dependence of the hopping elements and the two-body repulsive potential are smoothly set 
to zero at large interatomic distances. Nonetheless, crystalline phases other than diamond 
and graphite do not display a satisfactory agreement with first-principles calculations of the 
cohesion energy curves 161. For high-coordination (unstable) phases, this is probably due to 
an overestimation of the repulsive contribution, which scales linearly with the coordination 
number. However, for the linear chain, we think that the limitations come from the TB part, 
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which bears an intrinsic reference to the diamond stprcture. The hopping terms, in fact, are 
fitted to the equilibrium bands of diamond and, even if a suitable scaling law is adopted for 
their radial dependence, it is difficult to reproduce the strong dehybridization occurring in 
the sp configuration. 

This deficiency is not easily dealt with by adding more pairwise terms into the repulsive 
potential (as it is in the work of Xu eral [5 ] ) ,  nor by constructing a complicated coordination 
dependence into it (as was done by Mercer and Chou [7] for example, in the case of silicon 
and germanium). 

It i s  our opinion that the physical intelligibility of TB potentials is preserved only if a 
limited set of parameters is used and, in  turn, making such a choice is possible only if the 
important physical effects are correctly included in the potential. In this paper we present 
two TB potentials which include correction terms for coordination changes with respect 
to the diamond phase, both as an effective rescaling of the total potential depth and as a 
separate adjustment of the attractive and the repulsive parts. 

A good reproduction of the cohesion energy curves for all the low-coordination phases 
is obtained in the first, simpler case. The second form yields a very satisfactory agreement 
with the first-principles curves [6] from the linear chain up to the Fcc coordination, still 
with a limited set of parameters. 

In the next two sections we outline our potentials and comment on their physical 
meaning. Finally, in the last section, total energy predictions for small clusters and molecular 
dynamics simulations of liquid carbon are reported; they compare quite well with previous 
first-principles results. 

2. A first step towards coordination-dependent potentials 

Within a TB approach, the total energy is partitioned as 

where the are the eigenvalues of the TB matrix. They generate the attractive, covalent 
contribution to the cohesive energy (hereafter this will be indicated as the band-structure 
energy, &). The factor 2 in the first term takes into account the spin degeneracy, whereas 
v and k label the bands and the wavevectors, respectively. The repulsive contribution 
stemming from the overlap between occupied orbitals is represented by the second term in 
( I )  (hereafier indicated as Eq), where U(r , j )  is a short-range. central interaction between 
atom i and atom j: 

and 

with ro indicating the equilibrium distance between nearest neighbours and p E W. 
The set E,&) implicitly depends on the atomic positions through the Slater-Koster 

parametrization of the hopping elements in the TB matrix. The latter are given in terms 
of two-centre integrals V,,, Vspc, Vpp., V , ,  for sp-bonded materials and cosine directors 
between pairs of atoms. The radial dependence of Xi,,, (1 = s, p and m = U ,  x )  is given 
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by scaling the equilibrium values V& with a suitable function of the interatomic distance 
f (rij): 

Vltm = % , f ( r )  (3 ) 
and 

where q = 2 in the usual Harrison scheme [9]. In this case, we used the Chadi parameters 
J&, as reported in [PI, and scaled them according to the Harrison scheme. In the following 
we will refer to q and p as the exponents of the scaling laws of the attractive and repulsive 
parts of the potential, respectively. 

In spite of the fact that our total energy in (1) fits the cohesive energy curve of one single 
phase (diamond, for example) very well, it is not possible to get a good reproduction of the 
whole set of curves for different phases, especially at very low and very high coordination. 
This problem does not originate merely from the limitation of the set of parameters, since the 
functional form of the potential itself is not adequate for reproducing the relevant changes 
of the parameters with the coordination number. 

In a very interesting note that appeared in 1983 [I l l ,  Robertson pointed out that the 
Harrison prescription for the scaling law of the hopping elements is not suitable for use in 
the estimation of the actual changes in V,, from sp' diamond to sp' graphite, as indicated 
by the corresponding band dispersion relations. This is clearly related to the fact that 
dehybridized pi orbitals play different roles in the planar structure and in the tetrahedral 
configuration. As a consequence, the scaling of Ebr is not appropriate even from diamond 
to graphite and a correction term is needed. A related modification is recommended also 
for EEp, since it originates from the orbital overlap and is very probably affected by the 
orbital hybridization. 

A first attempt to include both corrections into one single term to add to (2) can be made 
by selecting a weak dependence on the interatomic distance, so that the main effect will 
turn out to be an energy rescaling with coordination z. Accordingly, EmI is then rewritten 
as 

with 

The coordination-dependent prefactor b(z) is very similar to the Tersoff expression [Z], 
even if the parameters ,3 and n are numerically different. They are fitted, along with @, p 
and p ,  onto the equilibrium values of the first-neighbour distance in diamond (r,".) and in 
the graphite (r,"), the bulk modulus (Bda) and the cohesion energy differences among the 
relevant phases (AEg;?&, AEg:;;). We have obtained @ = 13.079 eV, p = 7.014 eV, 
p = 3.432, p = 0.1 and n = 2.785. 

By retaining only the first neighbours in equation (4), we note that this correction term 
is proportional to 2'1' for large values of z, whereas a nearly linear dependence is produced 
at low coordinations. This feature is consistent with the fact that hybridization changes are 
more important in the latter case. 
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Figure 1. Cohesive energies of diamond, graphite and linear chains as referred to the equilibrium 
cohesive energy of lhe diamond phase. Solid lines show lhe calculation with potential A (see 
the text). and open circles show the ab initio results of 161. 

In figure 1 the cohesive energies diagram obtained using our potential are compared 
with first-principles results obtained by Fahy and Louie [6]. We note that a fairly good 
agreement is obtained at low coordinations (position and curvature), but the results for BCC 
and FCC structures are no better than those obtained using the 24parameter potential of Xu 
et U! [ 5 ] .  Still, our potential requires a much lower number of parameters than of [5] and 
satisfactory predictions via total energy or molecular dynamics simulations are possible, 
especially for average coordinations <6, as is the case for the liquid carbon results reported 
in Section 3. In the following sections we will refer to it as potential A. 

3. A flexible potential for carbon structures 

In order to overcome some of the shortcomings outlined above, we derived a different form 
of potential with the following features. 

(i) For the diamond phase it reduces to the usual expression (1) with (2) and (3). where 
suitable values of 4, q and p are chosen in order to get the best agreement with the cohesion 
energy curve, as calculated from first principles. 

(ii) Coordination-dependent corrections are operated both in the amactive and in the 
repulsive terms, since they scale with interatomic distance according to different power 
laws (p  and 4 are rather different). 

(iii) A smooth drop of the TB interactions and the repulsive potentials is introduced 
for large interatomic distances, since inverse-power-law decay is not suitable for molecular 
dynamics simulations, where the forces need to be zero at a certain cut-off radius. 

We started by accurately fitting 41 = @, q ,  p onto rp, Bda and E%, the cohesive 
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energy of the diamond phase, as provided by [6]. In our scheme, Ebs is actually rescaled as 

x E v ( k )  - x&Pinp (7) 
v,k 

where the E: are the on-site energies in the bulk configuration that we take to be constant in 
our simulations and np are the occupation numbers in the atomic configuration. Obviously, 
the second term in (7) does not correspond to the real atomic limit-its role is just intended 
to be that of fixing a reasonable energy reference for our potential-so it is zero at very 
large distances and small at the cut-off radius. 

The TB parameters for yym are here taken to be the ones given by Papaconstantopoulos 
[12], since they provide a ratio p/q which is closer to 2 than the Chadi parameters; this 
choice is indicated as being appropriate by the orbital overlap origin of the repulsive potential 
[IO]. In fact, we obtain q = 2.61, which is actually larger than the Harrison prescription 
(q - 2) for sp-bonded materials, and the repulsive exponent p turns out to be 4.098. 
The former is in very good agreement with accurate calculations of the scaling law for 
silicon performed by Mercer and Chou [7], on the basis of the first-principles band changes 
for hydrostatic deformation of the diamond structure. This guarantees that Eb$ is well 
reproduced for diamond. The good agreement with the overall curvature of the cohesive 
energy curve obtained by first-principles methods confirms the quality of our fit for the 
repulsive part. 

Coordination-dependent terms should be included now in the TB matrix. in order to take 
into account the objections of Robertson. However, it is much easier to add a term like 

AEbs = h ( Z )  (39 (8)  

to the band-structure energy, which displays such features: it scales with r like &(r) (same 
q), and r$2(z) is defined to be zero for z = 4. It is possible to obtained its behaviour for 
z # 4 via a fitting to the cohesion energy diagram for different coordinations (see figure 2), 
as will be described later. Anyway, it is very likely that @&) will be positive both for low 
and for high coordinations since sp3 and sp' configurations are actually the most cohesive 
ones (largest overlap). 

3 e- 

l 
0 

= O  2 4 6 8 10 12 

z z 
Figure 2. & as a function of ule coordination number z. Figure 3. h as a function of the coordination number L. 
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For the repulsive term, it is better to let the prefactor +l depend on the coordination 

(9) 
This is a reasonable choice-also used by Sawada for the silicon case [13]-since it does 
not add new terms into the potential and the same scaling law with respect to interatomic 
distance as for the diamond phase is also preserved. 

Actually, OUI choice to scale the correction terms for the attractive and the repulsive 
part with the same functional dependence as the diamond phase is not an oversimplification, 
since small deformations amund any equilibrium structures are very well described by 
the Harrison-like inverse-power law. At larger interatomic distance, outside the usual 
equilibrium situations, a smooth cut-off function is, however, necessary. 

(see figure 3) in such a way that 

+1(z = 4) = ,$pi". 

We have used the GoodwinSkinner-Pettifor cut-off function [ 141, 

with y = p , q  for the repulsive and amactive parts of the potential, respectively. We 
optimized the values of r, and nc to get the best reproduction of the total energy curvature 
for high-coordination phases (large interatomic distances), obtaining n, = 9 and r, = 2.65. 

The final expression of our TB potential is therefore 

where E' indicates the sum over first-nearest neighbours only. We are now left with the 
problem of fitting the proper functional dependence of $1 and $2 on coordination. This can 
be achieved by selecting suitable values of +I and $2 for each phase between z = 2 and 
z = 12, so that expression (11) matches the corresponding equilibrium lattice parameters 
and cohesion energies for the diamond phase. We obtain two numerical sets for +I(z) and 
+Z(Z) which can be interpolated using the following tool functions: 

In figure 2 and 3 we display &(z)  and +l ( z ) ,  respectively. We note that A&, varies 
significantly for 1 < z < 3 and 5 < z c 7, where a sizeable change in hybridization is 
expected with respect to the most stable situations (sp3 and sp' configurations). For 2 > 7 
it is reasonable to find no significant change in &. 

For +l(z)-see figure 3-we have nearly specular behaviour, with the maximum value 
for z = 4. This is consistent with the fact that the most cohesive configuration ( z  = 4) 
is determined by the largest overlap between hybridized, neighbouring orbitals and this, in 
tun, generates the largest repulsion as due to their occupation. Also at variance with figure 
2, there is a smooth decrease in figure 3 for z > 6, which shows that the straightforward 
pair counting of the two-body repulsion (actually a many-body term) overestimates Emp at 
high coordinations. It is interesting to note that this difference between ,$,(z) and $*(z) 
generates a behaviour with z of AEbr + Errp which is roughly linear in the case of low 
coordination and is weaker in the case of high coordination, as for potential A. In tables 1 
and 2 we report the actual values of the parameters occumng in expressions (13), and (12), 
respectively. 
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Table 1. Values of parameters of ihe &-function, 

h 2 < 4  2 > 4  

4025 

S 0.242 0.0723 
p 0.101 0. 
Y 4  4.108 

Table 2. Values of parameters of the +,-function. 

6, 2 < 4  2 7 4  

6’ 0.1261 1.072 
fl’ 0.0436 0.126 
Y‘ 4 1.133 
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Figure 4. Cohesive energies of diamond, graphite, linear chains, sc, BCC and FCC sWcWes ,as 
referred to the equilibrium cohesive energy of tbe diamond phase. Solid lines show the present 
calculation with potential B (see the text) and open circles show the &initio results of [6]. 

In figure 4 we show the total energy c w e s  from the linear chain up to the FCC phase. 
It is clear that there is a very good agreement with the ab initio results for all phases, and 
also the curvatures around the minima are nicely reproduced without any fitting. In the 
following sections we will refer to this potential as B. 

One final comment should be added +Z(z)(ro/r)q is a correction to Ebs which does not 
depend on the bond angles, unlike a genuine TB contribution. In fact this is not a problem 
for high coordinations: nonetheless for z < 2 (outside the range of our interpolation) a 
sizeable contribution from &hybridized n-orbitals is likely to appear when the n-bonds are 
bent into a ring formation from finite chains. In the next section we will generalize the 
notion of coordination and we will show how to include angular terms properly in the term 
422(Z). 
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4. Local effective coordination and the r-orbital’s bending energy 

So far we have used the two potentials (A and B) in total energy calculations for infinite 
crystalline phases, where the coordination number is a well defined constant for each 
structure. In molecular dynamics (m) simulations the coordination of any atom can change 
continuously with time. Besides this, the presence of rather different coordinations on a 
local scale, as in small clusters for example. indicates the need for a more refined definition 
of the coordination number. In order to overcome these problems we introduce the local 
effective coordination of the ith atom z ( i )  as the weighted number of atoms inside a suitable 
sphere of radius ro + do (here ro - 2.1-2.2 A, do can be selected freely from the range 
0 < do e 0.1 A): 

~ ( i )  = fc(rij) (14) 
ij 

with 
1 

{: 
if r e ro - & 

if r > ro f do. 
JW) = # - sin(X0 - ro)/Uo)l i f r o - d o c r  < m i d o  (15) 

In order to preserve the action-reaction principle for each pair of atoms (i, j )  we have used 
the mean value of the effective coordination: 

(16) 
1 
2 z ( i ,  j )  = -(z(i) + z ( j ) ) .  

With this definition any kind of system with arbitrary coordination can be simulated. In 
particular, for the crystalline phases the effective coordination coincides with the actual 
coordination number. 
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B (degrees) 
F i w  5. E b  for a himer as a function of the angle 0 between neighbouring bonds at fixed 
interatomic distance. 
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In the case of potential B we have already pointed out that angular dependence in @z(z) 
can be important for rings. In order to take it properly into account, we have determined 
the angular dependence of E h  for a chain as a function of the angle between two bonds. 
In figure 5 we show the results for E h  for a trimer where we have varied the angle 8 with 
respect to the chain axis at a fixed interatomic distance rij. Similar results are found for 
different values of interatomic distances, so a simple law for the angular dependence of the 
band sfmcture can be inferred: 

Et&, 8 )  = Eo(r) -k a(r)(l - cos'(8)) (17) 
with a ( r )  > 0. This holds in the particular case of the trimer, with the polar coordinate 
system suitably chosen; in any case, it can be easily generalized for generic Cartesian axes. 
In this case we must introduce the general expression 

(18) 
where 11.2. kl,z and m1,2 are the cosine direztors of the two bonds around the pivot atom in 
the chain. It is important to note that expression (18) has the same form as appears in the 
Slater-Koster expansion of the hopping terms for n-orbitals. Therefore we are confident 
that the physical effect of n-orbital bending is properly included if AE,, is now rewritten 
as 

(19) 

COW = - ( W Z  + klk2  + m1m2) 

9 

= @ Z ( Z i j )  [ I  + ~ ( 1  - Aij)fd(zij)]  (:) tq(rij) 

where &(zij)  is the same as before, q is a constant equal to 1.4 and fd is given by 

f d z )  = l/[exp((z - z o ) / d z )  + 11 (20) 
with zo = 1.89, dz = 0.1, so that the angular contribution is quenched for coordinations 
higher than 2. The term Aij contains the angular dependence and is constructed as an 
average of cosz 8 and cos2 8', where 8 and 8' are the angles between the two bonds mound 
atom i (ii' and i j )  and j ( j j '  and j i ) ,  respectively: 

It can be easily seen that in the case of trimers it gives the same functional expression as 
previously found for EbS. In the next section we will test the reliability of our scheme for 
prototypical systems with mixed coordinations: small clusters and low-density amorphous 
and liquid carbon. 

5. Molecular dynamics results 

In the following we will give the results of MD simulations both on small clusters 
(CZ, . . . , Cl0) and on liquid and amorphous carbon. The inclusion of an effective local 
coordination is likely to play a key role in properly describing the features of low-density 
liquid and amorphous carbon, where coexistence of twofold-, threefold- and fourfold- 
coordinated atoms is found [E, 16, 17, 51. 

The first set of results reported here are the pund-state properties of small carbon 
clusters. We have obtained good agreement with ab initio findings [19], as regards the 
trend of variation of the relative stability (figure 6) and of the bond lengths (table 3) with 
the number of atoms. In particular, we have found that both potentials, A and B, indicate 
a ring configuration to have higher stability than open segments with an even number 
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Figure 6. Cohesive energies of small clusters horn C2 to Clo (black dots). refemd to lhe 
ground-state energy of CLO, by using potential A (left-hand panel) and potential B (right-hand 
panel). Open circles show the ab initio results of [19]. 

Table 3. Bond lengths of small dusters (CX-CIO) as found using potential A (first row), potential 
B (second mw) and ob inirio results from [191. 

c2 c3 c4 CS c6 h CS a ClO 

Potential A tA, 1.15 1.29 1.295 125 1.31 ].U 1.22 1.23 1.3 
I .33 1.29 1.44 1.21 

1.35 1.31 
1.36 

Potential B (A) 1.12 1.285 1.29 1.24 1.29 1.23 1.20 1.21 1.28 
1.30 1.26 1.43 1.24 

1.33 I .28 
I .34 

From 1191 (A) 1.21 1.28 1.42 1.271 1.33 1.27 1.24 1.269 1.29 
1.275 1.26 1.38 1.261 

1 .?a 1.269 
1.283 

of atoms larger than four. In fact potential B displays a qualitative agreement with the 
Hartree-Fock results [19] which justifies the additional contribution of r-orbital bending, 
but for the dimer-which represents an extremal condition. These results were obtained by 
means of a standard simulated annealing technique, which consists in an extremely slow 
quenching from high initial temperature of about -2000-3000 K, down to 0 K. By taking 
full advantage of the low computational cost of the present MD scheme, we were able to 
perform long simulations (IO5 time steps) and **ith a relatively large time step (5 x s). 

In the second set of figures (figure 7-9), we show the structural and the electronic 
properties of liquid and amorphous carbon at low density (2 g c d ) .  These results were 
obtained by the following simulation strategies. First a well equilibrated liquid carbon 
sample was obtained by heating diamond in a cubic, periodically repeated simulation cell 
with 64 atoms, from 300 K up to 5000 K in 5000 time steps with a time step of 5 x s. 
A careful equilibration of the sample was subsequently carried on at this temperature for 
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Ryre 7. Pair correlation functions of liquid carbon at the density 2 g ~ m - ~ ,  as obtained using 
potential A (solid line in the left-hand panel) and potential B (solid line in the right-hand panel). 
Here the one generated from another IB potential [SI is reported for comparison (dashed line), 

6 

I -poten t ia l  A 

-- Ref. [ 17 4 

2 

0 0 
0 1 2 3 4 5 0 1 2 3 4 5  

r ( . a )  r ( A )  
Figure 8. Pair wrrelation functions of amorphous d o n  a1 low density (2 g aK3) as obtained 
using potential A (solid line in the left-hand panel) and potential B (solid line in the right-hand 
panel), compmd to the one generated from another n~ potential [17] (dashed line). 

lo4 time steps. Finally we collected our data during a constant MD run as long as 3000 
time steps. The results for the pair correlation function of the liquid with both potentials 
are shown in figure 7. 

Amorphous carbon was subsequently obtained by quenching the liquid sample. In 
particular, we used the same quenching rate as in 1171, i.e., we cooled the liquid carbon 
from 5000 K down to 700 K in 8000 time steps with a time step of 1 x s. Then we 
collected our data for 3000 time steps at a constant temperature of 700 K. The resulting 
pair correlation functions and electronic densities of states are shown in figure 8 and figure 
9, respectively. They show a rather good agreement with previous findings, [5,  171. This is 
confirmed also by the analysis of other structural properties, like the bond-angle distribution 
function and coordination number, demonstrating a good transferability of our potentials. 
In fact, potential B gives pair correlation functions and coordination number distributions 
in better agreement with ab initio and experimental findings than potential A. In particular, 
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potential A - potential B - 

-30 -20 -10 0 10 20 -30 -20 -10 0 10 20 
energy ( eV ) energy ( eV ) 

Figure 9. Electronic densities of slates for amorphous earban al low density (2 g cm-)). for 
potential A (top len-hand panel) and potential B (top right-hand panel). The corresponding 
densities of slates for graphite me displayed in the bonom panels 

we get a lower intensity for the peak in the pair correlation function corresponding to first 
neighbours, as in [15], and a smaller number of doubly coordinated sites than of fourfold 
coordinated ones (1% and 8% respectively) in the amorphous phase, in fine agreement with 
the experimental data of [18]. Obviously the great majority of the atoms in both of the 
amorphous samples are threefold coordinated, as is clear in figure 9 where we compare the 
electronic density of states of our amorphous samples (top) to the ones of graphite (bottom). 
We see that both potentials generate the appearance of bonding and antibonding n-states in 
the energy region where diamond displays the gap. The shape provided hy potential B (top 
right-hand panel) is very similar to that from another TEI calculation [17]: it shows only 
the broad peak of the bonding E-states below the Fermi level, since that for antibonding 
n-states is hidden by the broadening of the antibonding o-states, as due to the disorder 
in the stmcture. Therefore we think that the TB parametrization adopted for potential B is 
superior to the one adopted for potential A. All our results demonstrate that an accurate 
description of all the cohesion energy curves appearing in the phase diagram is important 
in order to obtain superior quality MD results, even within a restricted coordination range. 

6. Conclusions 

The usual procedure for the generation of one interatomic potential is based on fitting a 
rather general parametric form onto a set of structural. elastic, vibrational data that is as 
large as possible. Recent TB potentials for carbon have been obtained along these lines. 
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However, as the number of parameters increases, the fitting algorithm spans a parametric 
hypersurface which becomes more and more complex. Most of the time the final result is 
far from being unique and little help is provided by the physical interpretation, since the 
precise role of each parameter cannot be assessed. 

In this paper we presented an alternative path which is based on the assumption that the 
diamond phase is somehow a natural reference which can be represented by a rather simple 
potential form. Additional terms are introduced on a physical basis and the total number 
of parameters for the most general form is fairly limited. Preliminarily results of molecular 
dynamics simulations confirm the soundness of our scheme and provide a basis for more 
appealing simulations, outside the present range of first-principles methods. 
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